Anatomy and Biomechanics of the Meniscus

CM Gupte, PhD, FRCS (Tr&Orth),
Consultant Orthopaedic Surgeon/Senior Lecturer
Spyros Masouros, PhD, Lecturer

Departments of Bioengineering, Mechanical Engineering and Musculoskeletal Surgery
Imperial College London, UK
Outline

- Anatomy
- Structure – Function
- Load transmission – Meniscal motion
- Meniscal ligaments
- Tears – Tear management
- Summary – The importance of the meniscus
Menisci

Intraarticular knee structures
 - Semi-lunar (axial)
 - Wedge-shaped (coronal/sagittal)
 - Fibro-cartilaginous (type I Collagen)
Anatomy – Meniscal Ligaments

- Meniscal ligaments
 - Insertional
 - Anterior Intermensical (AIL)
 - Mensicofemoral (MFLs)
 - Deep Medial Collateral (dMCL)
Histology – Strength

- **Histology**\(^1\)-\(^3\)
 - **Tissue bulk**: circumferential fibre bundles (Type I)
 - **Surface**: Meshwork of thin fibrils/ radial tie fibres

- **Strength – Tensile modulus**\(^4\)
 - Hoop: \(~110\) MPa
 - Radial: \(~10\) MPa

(Taken from: Petersen & Tillmann, 1998, Anat Embryol)

\(^1\)Petersen & Tillmann, 1998, Anat Embryol
\(^2\)Bullough et al, 1970, JBJS-Br
\(^3\)Beaupre et al, 1986, CORR
\(^4\)Tissakht & Ahmed, 1995, J Biomech
Tensile properties of intra-articular tissues (in MPa)

<table>
<thead>
<tr>
<th></th>
<th>Tendon</th>
<th>Ligament</th>
<th>Meniscus (circumferential)</th>
<th>Labrum (circumferential)</th>
<th>Cartilage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>500-700</td>
<td>300</td>
<td>110</td>
<td>30-60</td>
<td>2-20</td>
</tr>
</tbody>
</table>
Meniscus functions

- Reduce contact stresses
- Load spreaders
- Shock absorbers
- Stability
- Lubrication
- Proprioception
- Nutrition
Structure – Function

- Fluid phase – compression
 - Water content ~75%
 - Low permeability
 - Low compressive and shear moduli

- Hence the meniscus
 - traps the fluid allowing fluid-pressure to build up
 - is very deformable
 - can accommodate high loads
Axial load transferred through the joint is converted into **meniscal hoop stresses**

The meniscus:
- conforms to the femoral condyles
- increases its circumference
- translates outwards
- spreads the load over a large contact area
- hence reduces the stresses on the underlying cartilage

Insertional ligaments are key

70-99% of the joint load is carried by the menisci

1Seedhom & Hargreaves, 1979, Eng Med
Load spreaders

- Increase contact surface area
- Reduce contact stresses

Loss of a meniscus

- Meniscectomy results in\(^1\-^3\):
 - Cartilage to cartilage contact
 - Less conformity
 - Decreased contact area
 - Increased contact stresses (up to 200\%\(^1\))
 - Increased shear stresses

\(^1\)Baratz et al, 1986, AJSM
\(^2\)Seedhom & Hargreaves, 1979, Eng Med
\(^3\)McDermott et al, 2008 in press, KSSTA

(Taken from: McDermott et al, 2008, KSSTA)
Shock absorbers

Compressive modulus varies according to:
- location (anterior > posterior)
- strain rate (increases)
- species

Modulus at 12% strain:
- Equilibrium: 83 kPa axial, 76 kPa radial
- 32%/sec (physiological): 718 kPa and 605 kPa

Fluid film lubrication also contributes to shock absorption.

Joint stability

- **Anterior drawer**
 Medial meniscus posterior horn stabilises anterior drawer in anterior cruciate deficient knee (Shoemaker JBJS 1986)

- **Posterior**
 MFLs are secondary restraints to posterior drawer\(^1\)

- **Rotational**
 Meniscal construct is a restraint to tibial rotation\(^2\)

2. Wang & Walker, 1974, JBJS-Am
4. Hollis et al, 2000, AJMS
Insertional Ligaments

- Anchor menisci on tibial plateau
- Control meniscal motion
- Prevent excessive meniscal extrusion
- Loss of one completely de-functions the meniscus

- Tensile modulus in human

\[\begin{align*}
\text{Medial} &: \approx 165 \text{ MPa} \\
\text{Lateral} &: \approx 90 \text{ MPa} \\
\text{Anterior} &: \approx 75 \text{ MPa}
\end{align*} \]

\[^{1}\text{Haut-Donahue & Hauch, July 2008, ESB} \]
Meniscal Ligaments

<table>
<thead>
<tr>
<th></th>
<th>MFLs</th>
<th>AIL</th>
<th>dMCL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Occurrence</td>
<td>92% ¹ (at least one MFL)</td>
<td>75% ⁵⁻⁷</td>
<td>100%</td>
</tr>
<tr>
<td>Function</td>
<td>Secondary restraints to posterior drawer²</td>
<td>??</td>
<td>Secondary restraint to valgus at 60-90° flexion⁸</td>
</tr>
<tr>
<td>Relation to meniscal function</td>
<td>MFL-deficiency results in 10% increase in contact stresses³</td>
<td>Controls meniscal motion in conjunction with the insertional ligaments (?)</td>
<td>Restrains excessive mobility of the medial meniscus ?? Contact stresses ??</td>
</tr>
<tr>
<td>Tensile properties</td>
<td>Modulus ~ 250 MPa⁴ \ i.e. similar to the major knee ligaments</td>
<td>??</td>
<td>??</td>
</tr>
</tbody>
</table>

¹Gupte et al, 2003, Arthroscopy
²Gupte et al, 2003, JBJS-Br
³Amadi et al, 2008, KSSTA (accepted)
⁵Kohn & Moreno, 1995, Arthroscopy
⁶Nelson & LaPrade, 2000, AJSM
⁷Berlet & Fowler, 1998, AJSM
⁸Robinson et al, 2006, AJSM
Meniscal motion

- Through knee flexion the menisci translate
 - outwards
 - posteriorly

Geometrical considerations

- The **medial** tibial plateau is **concave**
- The **lateral** tibial plateau is **convex**
- Therefore the medial meniscus is crushed on the tibial rim in deep flexion
 (injury 3:1 cf lateral meniscus)

(Taken from: Vedi et al, 1999, JBJS-Br)

(Taken from: Yao et al, 2008, J Orthop Res)
Lubrication

- Mobile meniscus helps lubricate the knee
- Articular cartilage has many modes of lubrication
Proprioception

- Receptors in insertional attachments: MT and MFL
- Ruffini endings and pacinian corpuscles
- Meniscectomy or meniscal tears reduce proprioception

Pathological states
Meniscal tears

- Circumferential
 - parallel to the load-bearing fibres
 - small effect on meniscal function
- Radial – Vertical
 - cut across the load-bearing fibres
 - large effect on meniscal function
- Flap
- Bucket handle
- Horizontal cleavage
- Complex
Meniscal tear management

- Repair
- Partial meniscectomy
- Total meniscectomy
- Allograft transplantation
- Implants (?)
- Tissue engineering (?)

(Taken from: Arnoczky & Warren, 1983, AJSM)
Repair

- Type of tear
- Age of tear
- Age/medical status of patient
- Location of tear
Meniscetomy Stresses

Removal of meniscus:
reduce surface area of contact>>>increased contact stresses

Does repair restore meniscal stress function???
No long term studies
Meniscectomy consequences

Lateral meniscectomy results in OA; also probably medial

Late degenerative changes after meniscectomy. Factors affecting the knee after operation. PR Allen, RA Denham, and AV Swan. JBJS 1984
Links between osteoarthritis and biomechanics

- Abnormal kinematics cause \textit{initiation} of osteoarthritis1,2
 - Injury
 (eg ACL-deficiency – meniscectomy)
 - Increased laxity
 (eg excessive meniscal extrusion, meniscal ligament resection)

- \textbf{Progression} of osteoarthritis with load1,2
 - Increased load in areas that are not optimised to accommodate it
 (eg cartilage areas covered by the menisci3)
 - Shear
 (eg non-conforming femoral condyles with tibial plateau)

1Andriacchi et al, 2004, Ann Biomed Eng
2Andriacchi & M"undermann, 2006, Curr Opin Rheumatol
3Thambyah et al, 2006, Osteoarthr & Cartilage
Meniscal replacement - artificial

- Products exist
- Require suture
- Normal mechanics
Meniscal transplant

- Normal articular cartilage
- Technically demanding
- Fixation issues: either suture to capsule OR bone plugs
- Normal mechanics
- Reduced degenerative change

Khon et al
Verdonk et al
Whats new

- New prostheses
- Suture techniques
- Location of repairable tears
Main function of the menisci is **load bearing**

This relates directly to the meniscal structure

The insertional ligaments are key in meniscal function

The meniscus-meniscal ligament construct works harmoniously under load to **protect** the cartilage

Clinical management should aim at **preserving** the function of the meniscus-meniscal ligament construct
Anatomy and Biomechanics of the Meniscus

Spyros Masouros

A. Amis, A. Bull, U. Hansen, H. Amadi, C. Gupte, I. McDermott

Departments of Bioengineering, Mechanical Engineering and Musculoskeletal Surgery

Imperial College London, UK